Grade 7 Bilingual Math worksheet: Real number 2

Name: \qquad Score: \qquad (Due: 26 Aug.)

1. Put all the following numbers into the right set.
$\sqrt[3]{2}, \frac{1}{4}, \sqrt{7},-\frac{5}{2}, \sqrt{2}, \sqrt{\frac{20}{3}},-\sqrt{5},-\sqrt[3]{8}, \sqrt{\frac{4}{9}}, 0,0.3737737773 \cdots, 1.71717171 \cdots$

2. Fill the blanks
(1) the square of a number is 256 , then the number is \qquad
(2) the volume of a cube is $125 \mathrm{cmm}^{3}$, then the length of each edge is \qquad
(3) the principal square root of 25 is \qquad
(4) the square root of 16 is \qquad and \qquad they are \qquad number for each other.
3. Calculate for each of the following
(1) $\sqrt[3]{\frac{125}{8}}$
(2) $\sqrt{(-5)^{2}}$
(3) $\sqrt[3]{(-5)^{3}}$
(4) $(\sqrt[3]{-5})^{3}$
(5) $\sqrt[3]{-1}$
4. Find the opposite number, reciprocal number and absolute value for each of the following

$$
5,-\pi, \frac{2}{3},-2.5, \sqrt[3]{-8}
$$

6. Compare the following pairs, put $<,>$ or $=$ in the blank
(1) $\sqrt{50} \quad 7$
(2) $\frac{\sqrt{5}-1}{2}=-\frac{1}{2}$
(3) $\sqrt[3]{30} \quad 3$
7. The radius of a circle is 1 cm , if there is a square whose area equals to the area of the circle. Get the length of the edge for that square.
8. For a number a, its square equals to itself, get all the possible value for a.
9. Find all the integers between $-\sqrt{2}$ and $\sqrt{11}$.
10. Let's consider summation of two irrational numbers, such as $\sqrt{2}+\sqrt{3}$, $\pi-\frac{\pi}{2}, \sqrt{8}-\sqrt{2}$, all of results are irrational numbers. Is this true for all the summation of two irrational numbers? If not, can you give me an example?
