1. As in the graph, in \triangle ABC, \angle A = 70°, line DE intersect AB, AC at point D,E. Find the value of \angle 1 + \angle 2.

2. As in the graph, ABCDEF is pentagon. Prove that $\angle A + \angle B + \angle C + \angle D + \angle E = 540^{\circ}$

- **3.** As in the graph, E is a point on line BC. $\angle A = \angle DEC, \angle D = \angle BEA, \angle A + \angle D = 90^{\circ}$. Prove that
- (1) $AE \perp DE$
- $(2)~AB \ /\!\!/ ~CD$

4.As in the graph, find the size of $\angle A, \angle B, \angle C$

5. As in the graph, AD is the angular bisector of $\angle BAC, \angle B = \angle BAD, \angle ADC = 80^{\circ}$, then find the size of $\angle B, \angle C$

6.As in the right angled triangle, $\angle C = 90^{\circ}$, $\angle A = 20^{\circ}$. If BD is the angular bisector of $\angle ABC$. Find the size of $\angle BDC$

7. As in the graph, $AB \ /\!\!/ CD$, AE intersect CD at point F. $\angle A = 45^{\circ}, \angle C = \angle E$. Find the size of $\angle C$

8. In the following graph, compare the size of $\angle 1, \angle 2, \angle 3$. Sort them by their sizes.

9.As in the graph, D is a point on edge BC, $\angle ADC = \angle ACD$. Prove that $\angle ACB > \angle B$

